Что будет если земля изменит орбиту. Изменение наклонения орбиты. Что произойдёт, если Луна исчезнет

Колебания формы орбиты и оси Земли и оледенения в олигоцене и миоцене


Тогда что они собой представляли? Ответ на этот вопрос неожиданно был получен после изучения палеогеновых и неогеновых отложений Антарктиды и Китая.
По результатам исследований Габриэля Боуэна, Роберта Деконто из Массачусетского университета и Девида Полларда (David Pollard) из Пенсильванского университета формирование ледяного щита в Антарктике после эоцен-олигоценовой катастрофы (34 млн. лет назад) происходило в два этапа. О бъем льда резко увеличивался в первые 40-50 тысяч лет олигоценовой эпохи , затем была эпоха потепления длительностью около 100 тысяч лет, за которой последовал второй 40-50 тысячелетний этап нарастания ледяного щита.
С такой же 100-тысячелетней периодичностью с начала олигоцена появлялись и исчезали озера в Тибете, что засвидетельствовали Гиллом Дюпонт-Нивет (Guillaume Dupont Nivet) и его коллеги из Нидерландов и Китая По их мнению, причиной этого события было периодическое изменение наклона земной оси по отношению к плоскости эклиптики (орбиты) и формы орбиты Земли от круговой до эллиптической – аналогичное четвертичным.
По данным Жетанга Гуо и его коллег из Китайской Академии наук, после олигоцен-миоценовой катастрофы , около 24 (23) млн. лет назад, возникли Великие Азиатские пустыни к северу от Тибетского плато. Это подтверждается накоплением 231 слоя древней коричневатой, нанесенной ветром, пыли, называемой лёссом. Лёсс откладывался в период с 24-22 до 6,2 млн. лет назад между слоями красной глины. Примечательно, что каждый такой слой формировался на протяжении около 65 тысяч лет.

Основная причина раскачивания Земли - глобальные катастрофы


Таким образом, мы имеем три однотипных случая. Глобальные катастрофы на рубеже эоцена и олигоцена , олигоцена и миоцена и плейстоцена и голоцена , которые сопровождались смещением земной оси на 15-30 град., землетрясениями и вулканическими извержениями по всей земле, потопами , оледенениями и резкой сменой видового разнообразия фауны и флоры.

На рубеже эоцена и олигоцена вымерли древние киты (Archeoceti), диноцераты, большинство титанотериев (бронтотериев) и креодонтов. На рубеже палеогенового и неогенового периодов вымерли гигантские индрикотерии и титанотерии. На рубеже плейстоцена и голоцена вымерли мамонта и шерстистые носороги.

После этих катастроф наряду с резким глобальным изменением климата (и , и ) начиналось периодическое чуть менее отчетливое изменение климата и отложение специфических отложений, связанных с повторяющимся изменением наклона земной оси к плоскости эклиптики и формы орбиты Земли (?) То есть,
Земля приобретала колебательные движения, которые проявлялись в раскачивании ее оси (раскачивании планеты вокруг условной прямой линии к плоскости ее орбиты) и колебании планеты на орбите .
Причиной таких колебательных движений Земли были глобальные катастрофы , которые были связаны со столкновениями с планетой астероидов, пролетами возле нее каких-то других планет или небесных тел, либо ядерными войнами богов и демонов , обладавших сверхмощным оружием (и здесь).
Как бы в подтверждение этому в «Махабхарате» говорится о том, что гигантский змей Шешу обвил Землю своими кольцами, чтобы спасти ее от чрезмерного раскачивания.

Читайте мои работы о катастрофах палеогенового, неогенового и четвертичного периодов, изменении положения земной оси и климата на Земле в разделах "Великие катастрофы ", "Мир в палеогене. Расцвет Гипербореи ", "Мир в олигоцене и неогене. Сокращение площади Гипербореи ", "Мир в плейстоцене. Великие оледенения и исход с Гипербореи "

Раздел "Великие катастрофы "

Приглашаю всех желающих для дальнейшего обсуждения данного материала на страницах


© А.В. Колтыпин, 20
11

Я, автор этой работы А.В. Колтыпин, разрешаю использовать ее для любых незапрещенных действующим законодательством целей при условии указания моего авторства и гиперссылки на сайт или

Экология

На Земле проходит четыре времени года по мере того, как она совершает один оборот вокруг Солнца, все это происходит наряду с увеличением и с уменьшением продолжительности светового дня в течение шести месяцев, которые случаются между зимним и летним солнцестоянием.

Мы также живем в 24-часовом суточном цикле, за который Земля обращается вокруг своей оси, более того, существует 28-дневный цикл вращения Луны вокруг Земли. Эти циклы повторяются бесконечно. Тем не менее, многие тонкости скрыты внутри и вокруг этих циклов, о которых большинство людей не знают, не могут объяснить или просто не замечают.


10. Высшая точка

Факт: Солнце не обязательно достигает своей самой высокой точки в полдень.

В зависимости от времени года нахождение Солнца в высшей точке варьируется. Это происходит по двум причинам: орбита Земли представляет собой эллипс, а не круг, а Земля, в свою очередь, наклонена к Солнцу. Так как Земля почти всегда вращается с одинаковой скоростью, а ее орбита в определенные времена года быстрее других, то иногда наша планета либо обгоняет, либо отстает от своей круговой орбиты.


Изменения, связанные с наклоном Земли, лучше всего рассматривать, представляя точки, расположенные близко друг к другу на экваторе Земли. Если вы наклоните состоящий из точек круг на 23,44 градуса (текущее значение наклона Земли), то вы увидите, что все точки, кроме тех, которые расположены сейчас на экваторе и тропиках, изменят свою долготу. Существуют также изменения во времени нахождения Солнца в своей самой высокой точке, они связаны также с географической долготой, в которой находится наблюдатель, однако, данный фактор является постоянным для каждой долготы.

9. Направление восхода

Факт: Восход и закат не меняют своего направления сразу после солнцестояния.

Большинство людей полагают, что в северном полушарии самый ранний закат происходит в период декабрьского солнцестояния, а самый поздний закат происходит во время июньского солнцестояния. На самом деле это не так. Солнцестояние – это просто даты, которые говорят о продолжительности самого короткого и самого длинного светового дня. Однако, изменения во времени в период полдня тянет за собой изменения в периодах восхода и заката солнца.


Во время декабрьского солнцестояния полдень наступает с опозданием на 30 секунд ежедневно. Так как в продолжительности светового дня не происходит никаких изменений во время солнцестояния, как закат, так и рассвет ежедневно опаздывают на 30 секунд. Поскольку закат опаздывает в период зимнего солнцестояния, самый ранний закат уже успевает "случиться". При этом, в этот же день восход солнца тоже приходит с опозданием, самого позднего восхода приходиться ждать.

Бывает и так, что самый поздний закат происходит спустя короткое время после летнего солнцестояния, а самый ранний восход случается незадолго до летнего солнцестояния. Тем не менее, эта разница не столь значительна по сравнению с декабрьским солнцестоянием, потому что изменение времени полдня из-за эксцентриситета в этом солнцестоянии зависит от изменений полдня из-за наклона, но общая скорость изменений носит положительную динамику.

8. Эллиптическая орбита Земли

Большинство людей знают, что Земля вращается вокруг Солнца по эллипсу, а не по кругу, но значение эксцентриситета орбиты Земли равно примерно 1/60. Планета, которая вращается вокруг своего солнца, всегда имеет эксцентриситет между 0 и 1 (учитывая 0, но без учета 1). Эксцентриситет равный 0 говорит о том, что орбита представляет собой идеальный круг с солнцем в центре и с планетой, которая вращается с постоянной скоростью.


Тем не менее, существование такой орбиты крайне маловероятно, поскольку есть континуум возможных значений эксцентриситета, который по замкнутой орбите измеряется путем деления расстояния между солнцем и центром эллипса. Орбита становится длиннее и тоньше по мере того, как эксцентриситет приближается к 1. Планета всегда вращается быстрее по мере приближения к Солнцу, и замедляется по мере отдаления от него. Когда эксцентриситет больше или равен 1, то планета один раз обходит свое солнце и навсегда улетает в космос.

7. Колебания Земли

Земля периодически проходит через колебания. Это объясняется главным образом воздействием гравитационных сил, которые "растягивают" экваториальную выпуклость Земли. Солнце и Луна также оказывают давление на эту выпуклость, создавая тем самым колебания Земли. Тем не менее, для повседневных астрономических наблюдений эти эффекты пренебрежимо малы.


Наклон Земли и ее долгота обладают периодом 18,6 лет, это время, необходимое Луне, чтобы сделать круг, проходящий через узлы и создающий колебания сроком от двух недель до шести месяцев. Продолжительность зависит от земной орбиты вокруг Солнца и от лунной орбиты вокруг Земли.

6. Плоская Земля

Факт (своего рода): Земля действительно плоская.

Католики из эпохи Галилея были, возможно, лишь совсем немного правы, полагая, что Земля плоская. Так получилось, что Земля обладает почти шаровидной формой, но она слегка приплюснута у полюсов. Экваториальный радиус Земли составляет 6378,14 километра, при этом ее полярный радиус равен 6356,75 км. Следовательно, геологам пришлось придумывать различные версии широты.


Геоцентрическая широта измеряется по зрительной широте, то есть это угол по отношению экватора к центру Земли. Географическая широта – это широта с точки зрения наблюдателя, а именно это угол, состоящий из линии экватора и прямой линией, проходящей под ногами человека. Географическая широта является стандартом для построения карт и определения координат. Тем не менее, измерение угла между Землей и Солнцем (как далеко на север или на юг светит Солнце на Землю в зависимости от времени года) всегда происходит в геоцентрической системе.

5. Прецессия

Земная ось заостряется к вершине. Кроме того, эллипс, формирующий земную орбиту, вращается очень медленно, делая форму движения Земли вокруг Солнца очень похожей на ромашку.


В связи с обоими типами прецессии, астрономы выявили три типа лет: звездный год (365, 256 дней), который обладает одной орбитой относительно далеких звезд; аномалистический год (365,259 дней), который представляет собой период времени, в течение которого Земля передвигается от ближайшей точки (перигелии) к самой дальней точке от Солнца (афелии) и обратно; тропический год (365, 242 дня), продолжительностью от одного дня весеннего равноденствия до другого.

4. Циклы Миланковича

Астроном Милютин Миланкович обнаружил в начале 20 века, что наклон Земли, эксцентриситет и прецессии не являются постоянными величинами. За период около 41000 лет Земля совершает один цикл, во время которого она наклоняется от 24,2 – 24,5 градусов до 22,1 – 22,6 градусов и обратно. В настоящее время наклон оси Земли уменьшается, и мы находимся ровно на полпути к минимальному наклону в 22,6 градуса, который достигнется примерно через 12000 лет. Эксцентриситет Земли проходит по гораздо более беспорядочному циклу, продолжительностью 100000 лет, за этот период он колеблется в пределах 0,005 – 0,05.


Как уже говорилось, в настоящее время его показатель – 1/60 или 0,0166, но сейчас он идет на снижение. Минимального показателя он достигнет через 28000 лет. Он предположил, что эти циклы и вызывают ледниковый период. Когда величины наклона и эксцентриситета особенно высоки, а прецессии таковы, что Земля наклонена от Солнца, либо к Солнцу, то в итоге мы имеем слишком холодную зиму в западном полушарии, при этом, весной или летом тает слишком большое количество льда.

3. Замедление вращения

Из-за трения, вызванного приливами и бродячими частицами в пространстве, скорость вращения Земли постепенно замедляется. По оценкам, с каждым веком Земле требуется на пять сотых секунды дольше, чтобы повернуть один раз. В начале формирования Земли, день длился не более 14 часов вместо сегодняшних 24. Замедление вращения Земли и является причиной того, почему каждые несколько лет мы добавляем долю секунды к продолжительности суток.


Однако время, когда наша 24-часовая система перестанет быть актуальной настолько далеко, что практически никто не выдвигает предположений о том, что мы будем делать с появившимся лишним временем. Некоторые полагают, что мы могли бы к каждому дню добавить определенный период времени, что в конечном итоге сможет дать нам 25-часовой день, или же изменить продолжительность часа, разделив сутки на 24 равные части.

2. Луна отдаляется

Каждый год Луна отходит от своей земной орбиты на 4 сантиметра. Это связано с приливами, которые она "приносит" на Землю.


Гравитация Луны, воздействующая на Землю, искажает земную кору на несколько сантиметров. Так как Луна вращается намного быстрее, чем ее орбиты, выпуклости тянут Луну за собой и вытягивают ее из орбит.

1. Сезонность

Солнцестояние и равноденствие являются символами начала соответствующих сезонов, а не их серединой. Все потому, что Земле необходимо время для того, чтобы нагреться или охладиться. Таким образом, сезонность отличается соответствующей длиной дневного света. Этот эффект называется сезонной задержкой и варьируется в зависимости от географического положения наблюдателя. Чем дальше человек путешествует от полюсов, тем тенденция отставания меньше.


Во многих североамериканских городах отставание, как правило, около месяца, в результате чего самая холодная погода наступает 21 января, а самая теплая 21 июля. Тем не менее, люди, которые живут в таких широтах, получают удовольствие и в конце августа от теплых летних деньков, надевая легкую одежду и даже выходя на пляж. При этом эта же дата на "другой стороне" летнего солнцестояния, будет соответствовать примерно 10 апрелю. Многие люди останутся лишь в предвосхищении лета.

Известны три циклических процесса , приводящих к медленным, так называемым вековым колебаниям значений солнечной постоянной. С этими колебаниями солнечной постоянной обычно связывают соответствующие вековые изменения климата, что нашло отражение ещё в работах М.В. Ломоносова, А.И. Воейкова и др. В дальнейшем при разработке этого вопроса возникла астрономическая гипотеза М. Миланковича , объясняющая изменения климата Земли в геологическом прошлом. Вековые колебания солнечной постоянной связаны с медленными изменениями формы и положения земной орбиты, а также ориентировки земной оси в мировом пространстве, обусловленными взаимными притяжением Земли и других планет. Поскольку массы других планет Солнечной системы значительно меньше массы Солнца, их влияние сказывается в виде малых возмущений элементов орбиты Земли. В результате сложного взаимодействия сил тяготения путь Земли вокруг Солнца представляет собой не неизменный эллипс, а достаточно сложную замкнутую кривую. Облучение Земли, следующей по этой кривой, непрерывно изменяется.

Первый циклический процесс − это изменение формы орбиты от эллиптической к почти круговой с периодом около 100 000 лет; он называется колебанием эксцентриситета. Эксцентриситет характеризует вытянутость эллипса (малый эксцентриситет – круглая орбита, большой эксцентриситет – орбита − вытянутый эллипс). Оценки показывают, что характерное время изменения эксцентриситета равно 10 5 лет (100 000 лет).

Рис. 3.1 − Изменение эксцентриситета орбиты Земли (без учета масштаба) (из Дж. Силвер, 2009)

Изменения эксцентриситета – непериодические. Они колеблются около значения 0,028 в пределах от 0,0163 до 0,0658. В настоящее время эксцентриситет орбиты равен 0,0167 продолжает уменьшаться, причем минимальное значение его будет достигнуто через 25 тыс. лет. Предполагаются и более длительные периоды уменьшения эксцентриситета − до 400 тыс. лет. Изменение эксцентриситета земной орбиты приводит к изменению расстояния между Землей и Солнцем, а следовательно, и количества энергии, поступающей в единицу времени на единичную площадку, перпендикулярную солнечным лучам на верхней границе атмосферы. Получено, что при изменении эксцентриситета от 0,0007 до 0,0658 разность между потоками солнечной энергии от эксцентриситета для случаев, когда Земля проходит перигелий и афелий орбиты, меняется от 7 до 20−26 % солнечной постоянной. В настоящее время орбита Земли мало эллиптична и разность потока солнечной энергии около 7 %. Во время наибольшей эллиптичности эта разность может достигать 20−26 %. Из этого следует, что при малых эксцентриситетах количество солнечной энергии, поступающей на Землю, находящуюся в перигелии (147 млн км) или афелии (152 млн км) орбиты, различаются незначительно. При наибольшем эксцентриситете в перигелий приходит энергии больше, чем в афелий, на величину, составляющую четверть солнечной постоянной. В колебаниях эксцентриситета выделены следующие характерные периоды: около 0,1; 0,425 и 1,2 млн лет.

Второй циклический процесс − это изменение наклона земной оси к плоскости эклиптики, имеющее период около 41 000 лет. За это время наклон меняется от 22,5° (21,1) до 24,5° (рис. 3.2). В настоящее время он составляет 23°26"30"". Увеличение угла приводит к увеличению высоты Солнца летом и уменьшению зимой. При этом инсоляция увеличится в высоких широтах, на экваторе – несколько уменьшится. Чем меньше этот наклон, тем меньше различия между зимой и летом. Более теплые зимы бывают более снежными, а более холодные лета не дают всему снегу растаять. Снег накапливается на Земле, способствуя росту ледников. При росте наклона сезоны выражены более резко, зимы холоднее и снега меньше, а лето теплее и больше снега и льда тает. Это способствует отступлению ледников в полярные районы. Таким образом, увеличение угла усиливает сезонные, но уменьшает широтные различия в количестве солнечной радиации на Земле.

Рис. 3.2 – Изменение наклонения оси вращения Земли с течением времени (из Дж. Силвер, 2009)

Третий циклический процесс − это колебание оси вращения земного шара, называемое прецессией. Прецессия земной оси – это медленное движение оси вращения Земли по круговому конусу. Изменение ориентировки земной оси в мировом пространстве, обусловлено несовпадением центра Земли, вследствие ее сплюснутости, с осью притяжения Земля−Луна−Солнце. В итоге ось Земли описывает некоторую коническую поверхность (рис. 3.3). Период этого колебания около 26 000 лет.

Рис. 3.3 – Прецессия орбиты Земли

В настоящее время Земля ближе к Солнцу в январе, чем в июне. Но вследствие прецессии через 13 000 лет она будет ближе к Солнцу в июне, чем в январе. Это приведет к росту сезонных колебаний температуры Северного полушария. Прецессия земной оси приводит к взаимному изменению положения точек зимнего и летнего солнцестояния относительно перигелия орбиты. Период, с которым повторяется взаимное положение перигелия орбиты и точки зимнего солнцестояния, равен 21 тыс. лет. Еще сравнительно недавно, в 1250 г., перигелий орбиты совпадал с точкой зимнего солнцестояния. Теперь Земля проходит перигелий 4 января, а зимнее солнцестояние осуществляется 22 декабря. Разница между ними составляет 13 суток, или 12º65". Следующее совпадение перигелия с точкой зимнего солнцестояния произойдет через 20 тыс. лет, а предыдущее было 22 тыс. лет назад. Однако между указанными событиями с перигелием совпадала точка летнего солнцестояния.

При малых эксцентриситетах положение точек летнего и зимнего солнцестояния относительно перигелия орбиты не приводит к существенному изменению количества тепла, поступающего на землю в течение зимнего и летнего сезонов. Картина резко меняется, если эксцентриситет орбиты оказывается большим, например 0,06. Таким эксцентриситет был 230 тыс. лет назад и будет через 620 тыс. лет. При больших эксцентриситетах Земля часть орбиты, прилегающую к перигелию, где количество солнечной энергии наибольшее, проходит быстро, а оставшуюся часть вытянутой орбиты через точку весеннего равноденствия к афелию − медленно, долго находясь на большом удалении от Солнца. Если в это время перигелий и точка зимнего солнцестояния совпадают, в Северном полушарии будет наблюдаться короткая теплая зима и долгое прохладное лето, в Южном полушарии − короткое теплое лето и долгая холодная зима. Если же с перигелием орбиты будет совпадать точка летнего солнцестояния, то в Северном полушарии будет наблюдаться жаркое лето и длительная холодная зима, в Южном – наоборот. Длительное прохладное и влажное лето является благоприятным фактором для роста ледников в полушарии, где сосредоточена основная часть суши.

Таким образом, все перечисленные разновеликие колебания солнечной радиации накладываются друг на друга и дают сложный вековой ход изменения солнечной постоянной, а следовательно, существенное влияние на условия формирования климата посредством изменения прихода количества солнечной радиации. Наиболее резко колебания солнечного тепла выражаются тогда, когда все эти три циклических процесса совпадают по фазе. Тогда возможны великие оледенения илиполное таяние ледников на Земле.

Подробное теоретическое описание механизмов влияния астрономических циклов на земной климат было предложено в первой половине XX в. выдающимся сербским астрономом и геофизиком Милутином Миланковичем, который разрабатывал теорию периодичности ледниковых периодов. Миланкович выдвинул гипотезу, что циклические изменения эксцентриситета орбиты Земли (ее эллиптичность), колебания угла наклона оси вращения планеты и прецессия этой оси могут вызывать существенные изменения климата на Земле. Например, около 23 млн лет назад совпали периоды минимального значения эксцентриситета земной орбиты и минимального изменения наклонения оси вращения Земли (именно этот наклон ответствен за смену времен года). В течение 200 тыс. лет сезонные изменения климата на Земле были минимальными, так как орбита Земли была практически круговой, а наклон земной оси почти не менялся. Как итог, разница в летних и зимних температурах на полюсах составляла всего несколько градусов, льды за лето не успевали таять, и произошло заметное увеличение их площади.

Теория Миланковича неоднократно подвергалась критике, так как вариации радиации по указанным причинам относительно невелики , и высказывались сомнения, могут ли столь малые изменения радиации высоких широт вызывать существенные колебания климата и приво­дить к оледенениям. Во второй половине XX в. было получено значительное количество новых фактических данных о глобальных колебаниях климата в плейстоцене. Значительную долю среди них составляют колонки океанических отложений, которые имеют важное преимущество перед наземными отложениями, заключающееся в значительно большей целостности последовательности отложений, нежели на суше, где отложения часто смещались в пространстве и многократно переотлагались. Затем был проведен спектральный анализ таких океанских последовательностей, относящихся к последним примерно 500 тыс. лет. Для анализа были отобраны две колонки из центральной части Индийского океана между субтропической конвергенцией и антарктическим океанским полярным фронтом (43–46° ю. ш.). Этот район одинаково далеко расположен от материков и потому мало подвержен влиянию колебаний эрозионных процессов на них. В то же время район характеризуется достаточно большой скоростью осадконакопления (более 3 см/1000 лет), так что можно различить климатические колебания с периодом значительно меньше 20 тыс. лет. В качестве индикаторов колебаний климата были выбраны относительное содержание тяжелого изотопа кислорода δО 18 в планктонных фораминиферах, видовой состав радиоляриевых сообществ, а также относительное содержание (в процентах) одного из видов радиолярий Цикладофора давизиана. Первый индикатор отражает изменения в изотопном составе океанской воды, связанные с возникновением и таянием ледниковых щитов Северного полушария. Второй индикатор показывает колебания в прошлом температуры воды на поверхности (T s). Третий индикатор нечувствителен к температуре, но чувствителен к солености. Спектры колебаний каждого из трех индикаторов показывают наличие трех пиков (рис. 3.4). Наибольший по величине пик приходится примерно на период 100 тыс. лет, второй по величине - на 42 тыс. лет, третий - на 23 тыс. лет. Первый из этих периодов весьма близок к периоду изменения эксцентриситета орбиты, причем фазы изменений совпадают. Второй период колебаний климатических индикаторов совпадает с периодом изменений угла наклона земной оси. В этом случае сохраняется постоянное соотношение фаз. Наконец, третий период соответствует квазипериодическим изменениям прецессии.

Рис. 3.4. Спектры колебаний некоторых астрономических параметров:

1 - наклон оси, 2 - прецессия (а ); инсоляция на 55° ю. ш. зимой (б ) и на 60° с. ш. летом (в ), а также спектры изменений трех выбранных климатических индикаторов в последние 468 тыс. лет (Hays J.D., Imbrie J., Shackleton N.J., 1976)

Всеэто заставляет считать изменения параметров земной орбиты и наклона земной оси важными факторами изменения климата и свидетельствует о торжестве астрономической теории Миланковича. В конечном счете глобальные колебания климата в плейстоцене можно объяснить именно этими изменениями (Монин А.С., Шишков Ю.А., 1979).

Орбитальное маневрирование с изменением плоскости орбиты возможно на практике лишь в весьма ограниченных масштабах.

Допустим, что мы желаем повернуть плоскость орбиты на угол а вокруг линии, соединяющей спутник в некоторый момент времени с центром Земли, причем не хотим изменения ни размеров, ни формы орбиты. Если орбита круговая или спутник в этот

момент находится в перигее или апогее, для такой операции достаточно повернуть вектор скорости на тот же угол а. Из равнобедренного треугольника скоростей легко найдется дополнительный импульс скорости

где орбитальная скорость. Чтобы превратить экваториальную круговую орбиту в полярную необходимо добавить скорость т. е. параболическую! Обладая нужными запасами топлива, такой спутник с низкой околоземной орбиты мог бы улететь на Луну или на Марс, совершить там посадку и затем вернуться на Землю!

Попробуем решить нашу задачу обходным путем. Переведем спутник с помощью бортового двигателя с круговой орбиты на очень сильно вытянутую эллиптическую (типа орбиты 4 на рис. 17). Скорость в ее апогее ничтожна и повернуть ее на любой угол ничего не стоит (в «бесконечности» импульс перехода в новую плоскость движения равен нулю). В момент возвращения в точку старта с первоначальной орбиты понадобится затормозить движение до круговой скорости. Чем длиннее эллиптическая орбита, тем меньше сумма трех импульсов скорости. В пределе она равна

что в случае начальной высоты составит примерно тоже не столь уж малую величину (достаточна для совершения посадки на Луне!).

Для малых углов поворота а нет смысла переходить «через бесконечность». Выгода будет обнаруживаться, начиная с некоторого угла а, который для круговой орбиты определится из уравнения

откуда Недостаток «перехода через бесконечность» («бипараболического перехода», как еще говорят) заключается в «бесконечно большом» времени операции: в случае залета за лунную орбиту оно превышает 10 сут.

Переход через бесконечность может оказаться практически выгодным, если речь идет не только об изменении наклона орбиты, но и одновременно о ее подъеме, в частности если требуется

перевести спутник с низкой орбиты, сильно наклоненной к экватору, на стационарную орбиту. При этом трехимпульсный переход может оказаться выгоднее двухимпульсного несмотря на то, что радиус стационарной орбиты значительно меньше критического радиуса Эта выгода обнаруживается, если наклонение низкой первоначальной орбиты больше 38,6°

Для наклонения сумма импульсов при переходе через бесконечность в случае старта с начальной орбиты радиуса равна Если же апогейное расстояние, на котором сообщается второй импульс (точка В на рис. 36), равно то сумма импульсов превышает указанную величину на Вся операция требует примерно 11 сут }