Кремний его физические и химические свойства. Кремний. Свойства кремния. Физические свойства Кремния

  • Обозначение - Si (Silicon);
  • Период - III;
  • Группа - 14 (IVa);
  • Атомная масса - 28,0855;
  • Атомный номер - 14;
  • Радиус атома = 132 пм;
  • Ковалентный радиус = 111 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 2 ;
  • t плавления = 1412°C;
  • t кипения = 2355°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,74;
  • Степень окисления: +4, +2, 0, -4;
  • Плотность (н. у.) = 2,33 г/см 3 ;
  • Молярный объем = 12,1 см 3 /моль.

Соединения кремния:

В чистом виде впервые кремний был выделен в 1811 году (французы Ж. Л. Гей-Люссак и Л. Ж. Тенар). Чистый элементарный кремний был получен в 1825 г. (швед Й. Я. Берцелиус). Свое название "кремний" (в переводе с древнегреческого - гора) химический элемент получил в 1834 году (российский химик Г. И. Гесс).

Кремний является самым распространенным (после кислорода) химическим элементом на Земле (содержание в земной коре 28-29% по массе). В природе кремний чаще всего присутствует в виде кремнезема (песок, кварц, кремень, полевые шпаты), а также в силикатах и алюмосиликатах. В чистом виде кремний встречается чрезвычайно редко. Многие природные силикаты в чистом виде являются драгоценными камнями: изумруд, топаз, аквамари - это все кремний. Чистый кристаллический оксид кремния (IV) встречается в виде горного хрусталя и кварца. Оксид кремния, в котором присутствуют различные примеси, образует драгоценные и полудрагоценные камни - аметист, агат, яшма.


Рис. Строение атома кремния.

Электронная конфигурация кремния - 1s 2 2s 2 2p 6 3s 2 3p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у кремния находятся 4 электрона: 2 спаренных на 3s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома кремния в возбужденное состояние один электрон с s-подуровня "покидает" свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома кремния приобретает следующий вид: 1s 2 2s 2 2p 6 3s 1 3p 3 .


Рис. Переход атома кремния в возбужденное состояние.

Т. о., кремний в соединениях может проявлять валентность 4 (чаще всего) или 2 (см. Валентность). Кремний (так же, как и углерод), реагируя с другими элементами, образует химические связи в которых может как отдавать свои электроны, так и принимать их, но при этом способность принимать электроны у атомов кремния выражена слабее, чем у атомов углерода , по причине большего размера атома кремния.

Степени окисления кремния:

  • -4 : SiH 4 (силан), Ca 2 Si, Mg 2 Si (силикаты металлов);
  • +4 - наиболее устойчивая: SiO 2 (оксид кремния), H 2 SiO 3 (кремниевая кислота), силикаты и галогениды кремния;
  • 0 : Si (простое вещество)

Кремний, как простое вещество

Кремний представляет из себя темно-серое кристаллическое вещество с металлическим блеском. Кристаллический кремний является полупроводником.

Кремний образует только одну аллотропную модификацию, подобную алмазу, но при этом не такую прочную, т. к. связи Si-Si не так прочны, как в алмазной молекуле углерода (См. Алмаз).

Аморфный кремний - порошок бурого цвета, с температурой плавления 1420°C.

Кристаллический кремний получают из аморфного путем его перекристаллизации. В отличие от аморфного кремния, который является достаточно активным химическим веществом, кристаллический кремний более инертен в плане взаимодействия с другими веществами.

Строение кристаллической решетки кремния повторяет структуру алмаза, - каждый атом окружен четырьмя другими атомами, расположенными в вершинах тетраэдра. Атомы связываются друг с другом ковалентными связями, которые не так прочны, как углеродные связи в алмазе. По этой причине, даже при н.у. некоторые ковалентные связи в кристаллическом кремнии разрушаются, в результате чего высвобождается некоторая часть электронов, благодаря чему кремний обладает небольшой электропроводностью. По мере нагревания кремния, на свету или при добавлении некоторых примесей, кол-во разрушаемых ковалентных связей увеличивается, вследствие чего и увеличивается кол-во свободных электронов, следовательно, растет и электропроводность кремния.

Химические свойства кремния

Как и углерод, кремний может быть и восстановителем, и окислителем, в зависимости от того, с каким веществом вступает в реакцию.

При н.у. кремний взаимодействует только с фтором, что объясняется достаточно прочной кристаллической решеткой кремния.

В реакцию с хлором и бромом кремний вступает при температурах, превышающих 400°C.

С углеродом и азотом кремний взаимодействует только при очень высоких температурах.

  • В реакциях с неметаллами кремний выступает в роли восстановителя :
    • при нормальных условиях из неметаллов кремний реагирует только с фтором, образуя галогенид кремния:
      Si + 2F 2 = SiF 4
    • при высоких температурах кремний реагирует с хлором (400°C), кислородом (600°C), азотом (1000°C), углеродом (2000°C):
      • Si + 2Cl 2 = SiCl 4 - галогенид кремния;
      • Si + O 2 = SiO 2 - оксид кремния;
      • 3Si + 2N 2 = Si 3 N 4 - нитрид кремния;
      • Si + C = SiC - карборунд (карбид кремния)
  • В реакциях с металлами кремний является окислителем (образуются салициды :
    Si + 2Mg = Mg 2 Si
  • В реакциях с концентрированными р-рами щелочей кремний реагирует с выделением водорода, образуя растворимые соли кремниевой кислоты, называемые силикатами :
    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2
  • С кислотами (за исключением HF) кремний не реагирует.

Получение и применение кремния

Получение кремния:

  • в лаборатории - из кремнезема (алюмотерапия):
    3SiO 2 + 4Al = 3Si + 2Al 2 O 3
  • в промышленности - восстановлением оксида кремния коксом (технически чистый кремний) при высокой температуре:
    SiO 2 + 2C = Si + 2CO
  • самый чистый кремний получают восстановлением тетрахлорида кремния водородом (цинком) при высокой температуре:
    SiCl 4 +2H 2 = Si+4HCl

Применение кремния:

  • изготовление полупроводниковых радиоэлементов;
  • в качестве металлургических добавок при производстве жаропрочных и кислотоустойчивых соединений;
  • в производстве фотоэлементов для солнечных батарей;
  • в качестве выпрямителей переменного тока.

Кремний (лат. silicium), si, химический элемент iv группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 si (92,27%), 29 si (4,68%) и 30 si (3,05%).

Историческая справка . Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. - двуокись sio 2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния sif 4 , восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе . По распространённости в земной коре К. - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём sio 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400.

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость sio 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431 a , плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20-100°С) 800 дж/ (кг? К), или 0,191 кал/ (г? град) ; теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84-126 вт/ (м? К), или 0,20-0,30 кал/ (см? сек? град) . Температурный коэффициент линейного расширения 2,33 ? 10 -6 К -1 ; ниже 120k становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для l =6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость -0,13 ? 10 -6 . Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2) , модуль упругости 109 Гн/м 2 (10890 кгс/мм 2) , коэффициент сжимаемости 0,325 ? 10 -6 см 2 /кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. - полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3 ? 10 3 ом ? м (2,3 ? 10 5 ом ? см ) .

Полупроводниковый К. с проводимостью р -типа (добавки В, al, in или ga) и n -типа (добавки Р, bi, as или sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К .

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв ): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33 a , ковалентный радиус 1,17 a , ионные радиусы si 4+ 0,39 a , si 4- 1,98 a .

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3 d- орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом si-o, равная 464 кдж/моль (111 ккал/моль ) , обусловливает стойкость его кислородных соединений (sio 2 и силикатов). Энергия связи si-si мала, 176 кдж/моль (42 ккал/моль ) ; в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись sio 2 . Известна также моноокись sio, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь si и sio 2 . К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы six 4. Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от sih 4 до si 8 h 18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид si 3 n 4 , не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид sic) и с бором (sib 3 , sib 6 , sib 12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с ch 3 cl) с образованием органогалосиланов [например, si (ch 3) 3 ci], служащих для синтеза многочисленных кремнийорганических соединений.

К. образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с bi, tl, pb, hg). Получено более 250 силицидов, состав которых (mesi, mesi 2 , me 5 si 3 , me 3 si, me 2 si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций и силицид молибдена mosi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезёма sio 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением sici 4 или sihcl 3 цинком или водородом, термическим разложением sil 4 и sih 4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. - метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды - тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

В. П. Барзаковский.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях - известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1-0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание - силикоз.

В. В. Ковальский.

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники - германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1-2, М., 1969-70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; wolf Н. f., silicon semiconductor data, oxf. - n. y., 1965.

cкачать реферат

2349,85 °C (2623 K)

Уд. теплота плавления

50,6 кДж/моль

Уд. теплота испарения

383 кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

кубическая, алмазная

Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

(300 K) 149 Вт/(м·К)

Эмиссионный спектр
14
3s 2 3p 2

Происхождение названия

Чаще всего в природе кремний встречается в виде кремнезёма - соединений на основе диоксида кремния (IV) SiO 2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, - это песок (речной и кварцевый), кварц и кварциты , кремень , полевые шпаты . Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты .

Отмечены единичные факты нахождения чистого кремния в самородном виде .

Получение

Свободный кремний получается при прокаливании мелкого белого песка (диоксида кремния) с магнием:

\mathsf{SiO_2+2Mg \ \rightarrow \ 2MgO+Si}

При этом образуется аморфный кремний , имеющий вид бурого порошка .

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO 2 коксом при температуре около 1800 °C в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси - углерод, металлы).

Возможна дальнейшая очистка кремния от примесей.

  • Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg 2 Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH 4 . Моносилан очищают ректификацией , сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C .
  • Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl 4 , SiHCl 3 и SiH 2 Cl 2 . Их различными способами очищают от примесей (как правило, перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C .
  • Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии, предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Содержание примесей в доочищенном кремнии может быть снижено до 10 −8 -10 −6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний .

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым .

Физические свойства

Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза , параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si-Si по сравнению с длиной связи С-С твёрдость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда - 5,81·10 15 м −3 (для температуры 300 K).

Электрофизические свойства

Элементарный кремний в монокристаллической форме является непрямозонным полупроводником . Ширина запрещённой зоны при комнатной температуре составляет 1,12 эВ, а при Т = 0 К - 1,21 эВ . Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет около 1,5·10 10 см −3 .

На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нём примеси. Для получения кристаллов кремния с дырочной проводимостью в кремний вводят атомы элементов III-й группы, таких, как бор , алюминий , галлий , индий . Для получения кристаллов кремния с электронной проводимостью в кремний вводят атомы элементов V-й группы, таких, как фосфор , мышьяк , сурьма .

При создании электронных приборов на основе кремния используется преимущественно приповерхностный слой монокристалла (толщиной до десятков мкм), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно, на свойства созданного электронного прибора. При создании некоторых приборов используется технология модифицирующая поверхность монокристалла, например, обработка поверхности кремния различными химическими реагентами и её облучение.

Химические свойства

Подобно атомам углерода, для атомов кремния является характерным состояние sp 3 -гибридизации орбиталей. В связи с гибридизацией чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В соединениях кремний обычно также проявляет себя как четырёхвалентный элемент со степенью окисления +4 или −4. Встречаются двухвалентные соединения кремния, например, оксид кремния (II) - SiO.

При нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором , при этом образуется летучий тетрафторид кремния SiF 4 . Такая «неактивность» кремния связана с пассивацией поверхности наноразмерным слоем диоксида кремния, немедленно образующегося в присутствии кислорода , воздуха или воды (водяных паров).

кислородом с образованием диоксида SiO 2 , процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида.

При нагревании до температуры свыше 400-500 °C кремний реагирует с хлором , бромом и иодом - с образованием соответствующих легко летучих тетрагалогенидов SiHal 4 и, возможно, галогенидов более сложного состава.

Соединения металлов с кремнием - силициды - являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.

Соединения кремния служат основой для производства стекла и цемента . Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику - кирпич , фарфор , фаянс и изделия из них.

Широко известен силикатный клей , применяемый в строительстве как сиккатив , а в пиротехнике и в быту для склеивания бумаги.

Получили широкое распространение силиконовые масла и силиконы - материалы на основе кремнийорганических соединений.

Биологическая роль

Для некоторых организмов кремний является важным биогенным элементом . Он входит в состав опорных образований у растений и скелетных - у животных. В больших количествах кремний концентрируют морские организмы - диатомовые водоросли , радиолярии , губки . Большие количества кремния концентрируют хвощи и злаки , в первую очередь - подсемейства Бамбуков и Рисовидных, в том числе - рис посевной. Мышечная ткань человека содержит (1-2)·10 −2 % кремния, костная ткань - 17·10 −4 % , кровь - 3,9 мг/л . С пищей в организм человека ежедневно поступает до 1 г кремния.

Нормы предельно допустимых концентраций по кремнию привязаны к содержанию пыли диоксида кремния в воздухе. Это связано с особенностями химии кремния:

  • Чистый кремний, равно как карбид кремния , в контакте с водой или кислородом воздуха образует на поверхности непроницаемую пленку диоксида кремния (SiO 2), которая пассивирует поверхность;
  • Многие кремнийорганические соединения в контакте с кислородом воздуха и водяными парами окисляются или гидролизуются с образованием в конечном итоге диоксида кремния;
  • Монооксид кремния (SiO) на воздухе способен (иногда со взрывом) доокисляться до высокодисперсного диоксида кремния.

Диоксид кремния в нормальных условиях всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь - силикоз . Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках.

См. также

Напишите отзыв о статье "Кремний"

Комментарии

Примечания

Литература

  • Самсонов. Г. В. Силициды и их использование в технике. - Киев, Изд-во АН УССР, 1959. - 204 с. с илл.

Ссылки

Содержание статьи

КРЕМНИЙ, Si (silicium), химический элемент IVA подгруппы (C, Si, Ge, Sn и Pb) периодической системы элементов, неметалл. Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K 2 SiF 6 металлическим калием при высокой температуре, однако лишь в 1854 кремний был получен в кристаллической форме А.Девилем. Кремний – второй по распространенности (после кислорода) элемент в земной коре, где он составляет более 25% (масс.). Встречается в природе в основном в виде песка, или кремнезема, который представляет собой диоксид кремния, и в виде силикатов (полевые шпаты M (M = Na, K, Ba), каолинит Al 4 (OH) 8 , слюды). Кремний можно получить прокаливанием измельченного песка с алюминием или магнием; в последнем случае его отделяют от образующегося MgO растворением оксида магния в соляной кислоте. Технический кремний получают в больших количествах в электрических печах путем восстановления кремнезема углем или коксом. Полупроводниковый кремний получают восстановлением SiCl 4 или SiHCl 3 водородом с последующим разложением образующегося SiH 4 при 400–600° С. Высокочистый кремний получают выращиванием монокристалла из расплава полупроводникового кремния по методу Чохральского или методом бестигельной зонной плавки кремниевых стержней . Элементный кремний получают в основном для полупроводниковой техники, в остальных случаях он используется как легирующая добавка в производстве сталей и сплавов цветных металлов (например, для получения ферросилиция FeSi, который образуется при прокаливании смеси песка, кокса и оксида железа в электрической печи и применяется как раскислитель и легирующая добавка в производстве сталей и как восстановитель в производстве ферросплавов).

Применение.

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах – транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы.

СВОЙСТВА КРЕМНИЯ

Атомный номер 14
Атомная масса 28,086
Изотопы
стабильные 28, 29, 30
нестабильные 25, 26, 27, 31, 32, 33
Температура плавления, °С 1410
Температура кипения, °С 2355
Плотность, г/см 3 2,33
Твердость (по Моосу) 7,0
Содержание в земной коре, % (масс.) 27,72
Степени окисления –4, +2, +4

Свойства.

Кремний – темносерое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника – меди). При высокой температуре кремний весьма реакционноспособен и взаимодействует с большинством элементов, образуя силициды, например силицид магния Mg 2 Si, и другие соединения, например SiO 2 (диоксид кремния), SiF 4 (тетрафторид кремния) и SiC (карбид кремния, карборунд). Кремний растворяется в горячем растворе щелочи с выделением водорода: Si + NaOH ® Na 4 SiO 4 + 2H 2 ­ . 4 (тетрахлорид кремния) получают из SiO 2 и CCl 4 при высокой температуре; это бесцветная жидкость, кипящая при 58° С, легко гидролизуется, образуя хлороводородную (соляную) кислоту HCl и ортокремниевую кислоту H 4 SiO 4 (это свойство используют для создания дымовых надписей: выделяющаяся HCl в присутствии аммиака образует белое облако хлорида аммония NH 4 Cl). Тетрафторид кремния SiF 4 образуется при действии фтороводородной (плавиковой) кислоты на стекло:

Na 2 SiO 3 + 6HF ® 2NaF + SiF 4 ­ + 3H 2 O

SiF 4 гидролизуется, образуя ортокремниевую и гексафторокремниевую (H 2 SiF 6) кислоты. H 2 SiF 6 по силе близка к серной кислоте. Многие фторосиликаты металлов растворимы в воде (соли натрия, бария, калия, рубидия, цезия малорастворимы), поэтому HF используют для перевода минералов в раствор при выполнении анализов. Сама кислота H 2 SiF 6 и ее соли ядовиты.

Кремниевые кислоты.

Две оксокислоты кремния H 4 SiO 4 (ортокремниевая) и H 2 SiO 3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO 2 , если выпарить воду. Другие кремниевые кислоты получаются за счет различного количества воды в их составе: H 6 Si 2 O 7 (пирокремниевая кислота из двух молекул ортокремниевой кислоты), H 2 Si 2 O 5 и H 4 Si 3 O 8 (ди- и трикремниевая кислоты из двух и соответственно трех молекул метакремниевой кислоты). Все кислоты кремния слабые. При добавлении в раствор силиката серной кислоты образуется гель (желатинообразное вещество), при нагревании и высушивании которого остается твердый пористый продукт – силикагель, имеющий развитую поверхность и используемый как адсорбент газов, осушитель, катализатор и носитель катализаторов.

Со всеми, как говорится, вытекающими отсюда последствиями. Очевидно, с этих точек зрения и стоит рассматривать кремний - достаточно обыкновенный и достаточно необыкновенный элемент .

Природные соединения кремния

«Показывают мне, - писал в одной из своих популярных книг академик А. Е. Ферсман, - самые разнообразные предметы: прозрачный шар, сверкающий на солнце чистотой холодной ключевой воды, красивый, пестрого рисунка агат , яркой игры многоцветный опал , чистый песок на берегу моря, тонкую, как шелковинка, нитку из плавленого кварца или жароупорную посуду из него, красиво ограненные груды горного хрусталя , таинственный рисунок фантастической яшмы , окаменелое дерево, превращенное в камень, грубо обработанный наконечник стрелы древнего человека... все это одно и то же химическое соединение элементов кремния и кислорода».

Как ни разнообразен этот перечень, он, конечно, не исчерпывает многообразия природных соединений кремния. Начнем, однако, с упомянутых. «Грубо обработанный наконечник стрелы древнего человека» был сработан из кремня. А что такое кремень? Современный человек видел эти наконечники, равно, как и кремневые ружья, разве только в историческом музее. «Кремни», вставляемые в зажигалки курильщиков, ни внешне, ни по составу нимало не похожи на те кремни. Впрочем, многие из нас в детстве высекали искры, ударяя камешком о камешек, и скорее всего, тогда в наших руках были настоящие кремни.

Так что такое кремень? Химик на этот вопрос ответит буквально по Ферсману: двуокись кремния, кремнезем. Возможно, при этом добавит, что кремнезем кремня - аморфный, в отличие от кристаллического кремнезема кварцевого песка и горного хрусталя, и что часть химиков считает кремень кристаллогидратом mSiO 2 -nH 2 O.

Геолог на тот же вопрос ответит иначе, но тоже в общем-то буднично: минеральное образование, распространенное и мало интересное, пласты и «желваки» кремня обычно залегают среди известняков и меловых отложений...

И лишь гуманитарий-историк отзовется, должен отозваться, о кремне восторженно, ибо именно кремень - невзрачный и не очень прочный камень - помог в свое время человеку стать Человеком. Каменный век - век кремневых орудий труда. Причиной тому не только и не столько распространенность и доступность кремня, сколько способность его при сколе образовывать острые режущие кромки.

Обратимся теперь к кристаллическим аналогам кремня: «красиво ограненные груды горного хрусталя», «чистый песок на берегу моря»... Разница между ними небольшая, по существу лишь в размерах и примесях. Чистый песок - чистая кристаллическая двуокись кремния. Чистой воды горный хрусталь - то же самое. И что еще очень важно, оба эти вещества - полимеры, неорганические полимеры.

Одним из первых предположение о полимерном строении двуокиси кремния высказал Дмитрий Иванович Менделеев. Именно этим обстоятельством объяснял он нелетучесть и тугоплавкость веществ состава SiO 2 или, правильнее, (SiO 2)n. Рентгеноструктурные исследования наших дней подтвердили правильность этой догадки. Установлено, что кристаллический кремнезем представляет собой трехмерный сетчатый полимер. Цепочка кремнекислородных тетраэдров очень прочна, связь кремния с кислородом намного прочнее, чем, например, связь между атомами углерода в цепях органических полимеров. Кремнекислородным цепям хватает и гибкости, но в мире минералов они образуют жесткие сплетения в виде пространственных решеток и сеток, которые хрупки, неподатливы при механической обработке. Чтобы кремнекислородные цепочки остались гибкими, эластичными, их нужно изолировать одну от другой, окружить другими атомами или группами атомов. Это сделали химики, синтезировавшие многочисленные ныне кремнийорганические полимеры, речь о которых ниже. Впрочем, и природа дала великолепный образец волокнистого по структуре полимерного соединения кислорода и кремния - это асбест.

Сегодня очень непросто ответить на детский вопрос, какая из разновидностей кристаллической двуокиси кремния - песок или горный хрусталь - важнее для современного человека. Если брать в расчет только природный горный хрусталь, запасы которого практически исчерпаны, то ответ однозначен: конечно, песок. Из кварцевого песка делают кварцевое стекло, а из него - превосходную лабораторную посуду, баллоны ламп специального назначения и многое другое. Горный же хрусталь - не только поделочный материал, он и пьезоэлектрик. Он нужен радиотехнике во все возрастающих количествах, и вряд ли возможно было бы быстрое развитие этой отрасли, если бы люди не научились выращивать крупнокристаллический искусственный кварц в виде монокристаллов.

В 30-х годах Александр Евгеньевич Ферсман писал: «Через несколько десятков лет геологи не будут больше с опасностью для жизни взбираться на вершины Альп, Урала или Кавказа в погоне за кристаллами, не будут добывать их в безводных пустынях Южной Бразилии или в наносах Мадагаскара. Я уверен, что мы будем по телефону заказывать нужные куски кварца на государственном кварцевом заводе». Кварцевые заводы появились даже раньше, чем предсказывал ученый. Они выпускают кристаллы кварца, ничем не уступающие природному горному хрусталю, в количествах, достаточных не только для радиоэлектронной промышленности, не только для оптики, но и для украшений. Сомневающимся в этом утверждении рекомендуем обратиться в ближайший от их дома ювелирный магазин.

Мы умышленно ограничили рассказ о природных соединениях кремния тремя веществами и одним, по существу, соединением. Обо всем в коротком очерке все равно не расскажешь, а соединения с кислородом - самые важные. Вернемся, однако, собственно к кремнию.

Несмотря на распространенность в природе, этот элемент открыли сравнительно поздно. В 1825 г. выдающийся шведский химик и минералог Йенс Якоб Берцелиус сумел в двух реакциях выделить не очень чистый аморфный кремний в виде коричневого порошка. Для этого он восстановил металлическим калием газообразное вещество, известное ныне как тетрафторид кремния SiF 4 , и кроме того, провел такую реакцию:

K 2 SiF 6 + 4K → 6KF + Si.

Новый элемент был назван силицием (от латинского silex - кремень). Русское название этого элемента появилось спустя девять лет, в 1834 г., и благополучно дожило, в отличие, скажем, от «буротвора», до наших дней.

Кремний, как и углерод, образует различные аллотропические модификации. Кристаллический кремний так же мало похож на аморфный, как алмаз на графит . Это твердое вещество серостального цвета с металлическим блеском и гранецентрированной кристаллической решеткой того же типа, что у алмаза. Впрочем, аморфный кремний, как выяснилось, тоже не аморфный, а мелкокристаллический.

Первый промышленный способ производства кремния, изобретенный во второй половине XIX в. известным русским химиком Н. Н. Бекетовым, основан на восстановлении четыреххлористого кремния SiCl 4 парообразным цинком . Технически чистый кремний (95-98% Si) сейчас получают главным образом восстановлением кремнезема в электрической дуге между графитовыми электродами. Используется до сих пор изобретенный еще в прошлом веке способ восстановления кремнезема коксом в электрических печах. Этот способ также дает технический кремний, нужный металлургии как раскислитель, связывающий и удаляющий из металла кислород, и как легирующая добавка, повышающая прочность и коррозионную стойкость сталей и многих сплавов на основе цветных металлов. Впрочем, здесь важно «не переборщить»: избыток кремния может привести к хрупкости.

Не отошел в прошлое и бекетовский способ получения кремния (в реакции между парами цинка и тетрахлоридом кремния - летучей бесцветной жидкостью с температурой кипения всего 57,6°С). Это один из способов получения высокочистого полупроводникового кремния.

Полагают, что при абсолютном нуле идеально чистый и идеально правильный монокристаллический кремний должен быть идеальным электроизолятором. Но идеальная чистота так же недостижима, как и абсолютный нуль. В нашем случае это, что называется, к добру. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки - места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки (в микроколичествах; обычно это делается с помощью ионно-лучевых установок), в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой - электронной. Что значат для нас сегодня полупроводники, объяснять, вероятно, излишне. Расскажем лучше вкратце о способах получения полупроводникового кремния.

Один из этих способов упомянут выше. Заметим только, что реакцию высокочистых паров цинка с очень чистым четыреххлористым кремнием проводят при температуре 950°С в трубчатом реакторе, изготовленном из плавленого кварца. Элементный кремний образуется в виде игольчатых кристаллов, которые потом измельчают и промывают соляной кислотой, разумеется, тоже весьма чистой. Затем следует еще одна ступень очистки - зонная плавка, и лишь после нее поликристаллическую кремниевую массу превращают в монокристаллы.

Есть и другие реакции, в которых получают высокочистый полупроводниковый кремний. Это восстановление водородом трихлорсилана SiHCl 3 или четыреххлористого кремния SiCl 4 и термическое разложение моносилана, гидрида кремния SiH 4 или тетраиодида SiJ 4 . В последнем случае разложение соединения происходит на разогретой до 1000°С танталовой ленте. Дополнительная очистка зонной плавкой следует после каждой из этих реакций. В полупроводниковом кремнии содержание примесей крайне мало - 10-5-10-6% и даже меньше.

Кремнийорганика

Первое органическое соединение, содержащее кремний, было получено еще в 1845 г. в реакции этилового спирта с четыреххлористым кремнием: SiCl 4 + 4C 2 H 5 OH → Si(OC 2 H 5) 4 + 4HCl. Но это не был первый синтез кремнийорганического соединения в том смысле, какой вкладывает в это понятие современная химическая номенклатура. Кремнийорганическими сейчас признают лишь те соединения, в которых есть связь углерод - кремний. Так что первое кремнийорганическое соединение - тетраэтилсилиций Si (C 2 H 5) 4 - было получено лишь в 1863 г.

Конечно, в то время никто не предполагал, что спустя 100 лет кремнийорганика разовьется в самостоятельную и важную ветвь химической науки, что кремнийорганические соединения, особенно полимерные, станут первостепенно важны для многих видов промышленности, для транспорта и строительства, даже для быта.

Опытная хозяйка перед стиркой смажет руки силиконовым кремом, который предохранит их не только от воды, но и от разъедающего действия соды или стирального порошка. Сдавая в чистку платье или костюм, мы охотно доплачиваем за несминаемую складку и за «пропитку», благодаря которой платье будет меньше грязниться. И в том и в другом случае нашу одежду на фабрике химической чистки обработают кремнийорганическими жидкостями...

Этот же раздел химической науки подарил нам самые теплостойкие и в то же время самые морозостойкие синтетические каучуки. Температурный интервал работоспособности кремнийорганических каучуков от - 80 до +260°С, и эти каучуки уже давно существуют не в виде экзотических лабораторных образцов, а в виде массовой промышленной продукции.

Для современной электротехники очень важны кремнийорганические лаки, представляющие собой растворы кремнийорганических полимеров. Они обладают отличными электроизоляционными свойствами, устойчивы к атмосферным воздействиям, перепадам температур, солнечной радиации. Вот лишь один пример эффективности подобных материалов в технике. До внедрения кремнийорганических лаков изоляция электродвигателя врубовой машины в условиях шахты служила в среднем 5 месяцев. Когда в качестве изоляции стали применять кремнийорганический лак, срок службы двигателя до первого ремонта вырос до 3 лет.

Подобных примеров можно привести десятки, и число их будет множиться с каждым годом: появляются новые вещества, в состав которых наряду с кремнием и традиционными элементами органического мира входят алюминий , титан и другие металлы. Каждый привносит в молекулу что-то свое, и на каком-то этапе количество переходит в качество.

Кремний в микроорганизмах

Многие известные ученые работали и продолжают работать в этой области химии. Советскую школу кремнийоргаников основал академик К. А. Андрианов, который еще в 1937 г. получил первые в мире кремнийорганические полимеры - полиорганосилоксаны.

В обзорной статье о кремнии, написанной еще лет десять назад, такой раздел был бы необязателен. Слишком мало знала наука о роли кремния в жизни высших животных и человека. Известно было, что кремний (его двуокись) составляет основу скелетов у некоторых морских организмов - радиолярий , диатомей , некоторых губок, морских звезд . Известно также, что он нужен растениям : от злаков и осоки до пальм и бамбука. Чем жестче стебель растения, тем больше в его золе находят кремния. Растения, как и морские животные, берут кремний из воды. И в пресной, и в соленой воде растворено около 3 мг/л кремния (в виде кремниевых кислот и их солей). Роль же кремния в жизни высших животных и человека долгое время оставалась неясной. Было широко распространено мнение о биологической инертности и бесполезности соединений кремния.

Но, с другой стороны, давно известно серьезное заболевание - силикоз, вызываемое длительным вдыханием пыли, содержащей свободную двуокись кремния. Некоторые кремнийорганические соединения - арилсилатроны оказались токсичными для всех теплокровных животных. И в то же время известно, что в человеческом организме кремний есть практически повсеместно, больше всего - в костях, коже, соединительной ткани, а также в некоторых железах. При переломах костей содержание кремния в месте перелома возрастает почти в 50 раз. Минеральные воды с высоким содержанием кремния (например, известная кавказская вода «Джермук») оказывают благотворное влияние на здоровье людей, особенно пожилых.

Нельзя сказать, что роль кремния в жизни выяснена уже окончательно - скорее, наоборот: появление новой информации все больше осложняет картину. Синтезом и исследованием биологически активных соединений кремния сейчас заняты во многих лабораториях мира. Очень активно работают над комплексом проблем, который кратко можно назвать так же, как названа эта глава, т. е. кремний и жизнь, сотрудники Иркутского института органической химии во главе с членом-корреспондентом Академии наук СССР М. Г. Воронковым. В одной из своих статей он писал: «Уже имеющиеся многочисленные наблюдения позволяют прийти к заключению о необходимости широких и тщательных исследований (в том числе на молекулярном уровне) роли кремния в живых организмах и изыскания возможностей использовать соединения этого элемента для лечения и профилактики различных заболеваний и травм, а также для борьбы со старением». Пояснения здесь, наверное, требует лишь последний тезис. Дело в том, что установлены возрастные особенности кремниевого обмена в организме: с возрастом содержание этого элемента в костной ткани, артериях, коже существенно уменьшается...

Этот раздел наших знаний об элементе № 14 еще не стал сводом общепринятых, устоявшихся истин. Но, очевидно, именно здесь проходит в наши дни передний край борьбы за познание кремния - ближайшего аналога углерода, жизненно важного элемента.